翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Swamp cooler : ウィキペディア英語版
Evaporative cooler

An evaporative cooler (also swamp cooler, desert cooler and wet air cooler) is a device that cools air through the evaporation of water. Evaporative cooling differs from typical air conditioning systems which use vapor-compression or absorption refrigeration cycles. Evaporative cooling works by employing water's large enthalpy of vaporization. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation), which can cool air using much less energy than refrigeration. In extremely dry climates, evaporative cooling of air has the added benefit of conditioning the air with more moisture for the comfort of building occupants.
The cooling potential for evaporative cooling is dependent on the wet bulb depression, the difference between dry-bulb temperature and wet-bulb temperature. In arid climates, evaporative cooling can reduce energy consumption and total equipment for conditioning as an alternative to compressor-based cooling. In climates not considered arid, indirect evaporative cooling can still take advantage of the evaporative cooling process without increasing humidity. Passive evaporative cooling strategies offer the same benefits of mechanical evaporative cooling systems without the complexity of equipment and ductwork.
== Overview ==

Civilizations throughout the ages have found ingenious ways to combat the heat in their region. An earlier form of air cooling, the windcatcher was used in ancient Egypt and Persia thousands of years ago in the form of wind shafts on the roof, which caught the wind, passed it over subterranean water in a ''qanat'' and discharged the cooled air into the building. Nowadays Iranians have changed the windcatcher into an evaporative cooler (Coolere Âbi) and use it widely.
The evaporative cooler was the subject of numerous US patents in the 20th century; many of these, starting in 1906, suggested or assumed the use of excelsior (wood wool) pads as the elements to bring a large volume of water in contact with moving air to allow evaporation to occur. A typical design, as shown in a 1945 patent, includes a water reservoir (usually with level controlled by a float valve), a pump to circulate water over the excelsior pads and a squirrel-cage fan to draw air through the pads and into the house. This design and this material remain dominant in evaporative coolers in the American Southwest, where they are also used to increase humidity. In the United States, the use of the term ''swamp cooler'' may be due to the odor of algae produced by early units.
Evaporative cooling was in vogue for aircraft engines in the 1930s, for example with the Beardmore Tornado airship engine. Here the system was used to reduce, or eliminate completely, the radiator which would otherwise create considerable drag. In these systems the water in the engine was kept under pressure with pumps, allowing it to heat to temperatures above 100 °C, as the actual boiling point is a function of the pressure. The superheated water was then sprayed through a nozzle into an open tube, where it flashed into steam, releasing its heat. The tubes could be placed under the skin of the aircraft, resulting in a zero-drag cooling system.
However these systems also had serious disadvantages. Since the amount of tubing needed to cool the water was large, the cooling system covered a significant portion of the plane even though it was hidden. This added complexity and reliability issues. In addition this large size meant it was very easy for it to be hit by enemy fire, and practically impossible to armor. British and U.S. developers used ethylene glycol instead, cooling the liquid in radiators. The Germans instead used streamlining and positioning of traditional radiators. Even the method's most ardent supporters, Heinkel's Günter brothers, eventually gave up on it in 1940.
Externally mounted evaporative cooling devices (car coolers) were used in some automobiles to cool interior air—often as aftermarket accessories〔Such units were mounted on the passenger-side window of the vehicle; the window was rolled nearly all the way up, leaving only enough space for the vent which carried the cool air into the vehicle.〕—until modern vapor-compression air conditioning became widely available.
Passive evaporative cooling techniques in buildings, such as evaporative cooling towers, have only been developed and studied in the last 30 years. In 1986, two researchers at the University of Arizona, Tucson, W. Cunningham and T. Thompson, constructed the first passive evaporative cooling tower in Tucson, AZ. This performance data from this experimental facility became the foundation of today’s evaporative cooling tower design guidelines, developed by Baruch Givoni.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Evaporative cooler」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.